Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nitric oxide-driven hypoxia initiates synovial angiogenesis, hyperplasia and inflammatory lesions in mice.

Identifieur interne : 001150 ( Main/Exploration ); précédent : 001149; suivant : 001151

Nitric oxide-driven hypoxia initiates synovial angiogenesis, hyperplasia and inflammatory lesions in mice.

Auteurs : Fei Bao [République populaire de Chine] ; Pei Wu ; Na Xiao ; Frank Qiu ; Qing-Ping Zeng

Source :

RBID : pubmed:22479635

Descripteurs français

English descriptors

Abstract

BACKGROUND

Rheumatoid arthritis (RA) is an inflammatory articular disease with cartilage and bone damage due to hyperplasic synoviocyte invasion and subsequent matrix protease digestion. Although monoclonal antibodies against tumor necrosis factor alpha (TNFα) have been approved for clinical use in patients with RA, desired therapeutic regimens suitable for non-responders are still unavailable because etiological initiators leading to RA remain enigmatic and unidentified.

METHODOLOGY/PRINCIPAL FINDINGS

Bacteria-induced arthritis (BIA) that simulates collagen-induced arthritis (CIA) is developed in mice upon daily live bacterial feeding. The morphological lesions of paw erythema and edema together with the histological alterations of synovial hyperplasia and lymphocytic infiltration emerge as the early-phase manifestations of BIA and CIA. Bacteria- or collagen-mediated global upregulation of pro-inflammatory cytokines is accompanied by the burst of nitric oxide (NO). Elevation of the serum NO level is correlated with decline of the blood oxygen saturation percentage (SpO2), reflecting a hypoxic consequence during development towards arthritis. NO-driven hypoxia is further evident from a positive relationship between NO and lactic acid (LA), an end product from glycolysis. Upregulation of hypoxia inducible factor 1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) validates hypoxia-induced angiogenesis in the inflamed synovium of modeling mice. Administration of the NO donor compound sodium nitroprusside (SNP) causes articular inflammation by inducing synovial hypoxia. Anti-bacteria by the antibiotic cefotaxime and/or the immunosuppressant rapamycin or artesunate that also inhibits nitric oxide synthase (NOS) can abrogate NO production, mitigate hypoxia, and considerably ameliorate or even completely abort synovitis, hence highlighting that NO may serve as an initiator of inflammatory arthritis.

CONCLUSIONS/SIGNIFICANCE

Like collagen, bacteria also enable synovial lesions via upregulating pro-inflammatory cytokines, triggering NO production, driving hypoxic responses, and inducing synovial angiogenesis and hyperplasia, suggesting that sustained infection might be, in part, responsible for the onset of synovitis and arthritis in mice.


DOI: 10.1371/journal.pone.0034494
PubMed: 22479635
PubMed Central: PMC3316675


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nitric oxide-driven hypoxia initiates synovial angiogenesis, hyperplasia and inflammatory lesions in mice.</title>
<author>
<name sortKey="Bao, Fei" sort="Bao, Fei" uniqKey="Bao F" first="Fei" last="Bao">Fei Bao</name>
<affiliation wicri:level="3">
<nlm:affiliation>Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Jiangmen</settlement>
<region type="province">Guangdong</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wu, Pei" sort="Wu, Pei" uniqKey="Wu P" first="Pei" last="Wu">Pei Wu</name>
</author>
<author>
<name sortKey="Xiao, Na" sort="Xiao, Na" uniqKey="Xiao N" first="Na" last="Xiao">Na Xiao</name>
</author>
<author>
<name sortKey="Qiu, Frank" sort="Qiu, Frank" uniqKey="Qiu F" first="Frank" last="Qiu">Frank Qiu</name>
</author>
<author>
<name sortKey="Zeng, Qing Ping" sort="Zeng, Qing Ping" uniqKey="Zeng Q" first="Qing-Ping" last="Zeng">Qing-Ping Zeng</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22479635</idno>
<idno type="pmid">22479635</idno>
<idno type="doi">10.1371/journal.pone.0034494</idno>
<idno type="pmc">PMC3316675</idno>
<idno type="wicri:Area/Main/Corpus">001163</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001163</idno>
<idno type="wicri:Area/Main/Curation">001163</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001163</idno>
<idno type="wicri:Area/Main/Exploration">001163</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nitric oxide-driven hypoxia initiates synovial angiogenesis, hyperplasia and inflammatory lesions in mice.</title>
<author>
<name sortKey="Bao, Fei" sort="Bao, Fei" uniqKey="Bao F" first="Fei" last="Bao">Fei Bao</name>
<affiliation wicri:level="3">
<nlm:affiliation>Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou</wicri:regionArea>
<placeName>
<settlement type="city">Jiangmen</settlement>
<region type="province">Guangdong</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wu, Pei" sort="Wu, Pei" uniqKey="Wu P" first="Pei" last="Wu">Pei Wu</name>
</author>
<author>
<name sortKey="Xiao, Na" sort="Xiao, Na" uniqKey="Xiao N" first="Na" last="Xiao">Na Xiao</name>
</author>
<author>
<name sortKey="Qiu, Frank" sort="Qiu, Frank" uniqKey="Qiu F" first="Frank" last="Qiu">Frank Qiu</name>
</author>
<author>
<name sortKey="Zeng, Qing Ping" sort="Zeng, Qing Ping" uniqKey="Zeng Q" first="Qing-Ping" last="Zeng">Qing-Ping Zeng</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Antibodies (analysis)</term>
<term>Antibodies (immunology)</term>
<term>Arthritis, Experimental (genetics)</term>
<term>Arthritis, Experimental (immunology)</term>
<term>Arthritis, Experimental (microbiology)</term>
<term>Arthritis, Experimental (pathology)</term>
<term>Cytokines (immunology)</term>
<term>Hyperplasia (immunology)</term>
<term>Hyperplasia (microbiology)</term>
<term>Hyperplasia (pathology)</term>
<term>Hypoxia (immunology)</term>
<term>Hypoxia-Inducible Factor 1, alpha Subunit (genetics)</term>
<term>Immunization (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Neovascularization, Pathologic (genetics)</term>
<term>Neovascularization, Pathologic (pathology)</term>
<term>Nitric Oxide (blood)</term>
<term>Nitric Oxide (immunology)</term>
<term>Oxygen (blood)</term>
<term>Synovial Membrane (blood supply)</term>
<term>Synovial Membrane (immunology)</term>
<term>Synovial Membrane (microbiology)</term>
<term>Synovial Membrane (pathology)</term>
<term>Up-Regulation (MeSH)</term>
<term>Vascular Endothelial Growth Factor A (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Anticorps (analyse)</term>
<term>Anticorps (immunologie)</term>
<term>Arthrite expérimentale (anatomopathologie)</term>
<term>Arthrite expérimentale (génétique)</term>
<term>Arthrite expérimentale (immunologie)</term>
<term>Arthrite expérimentale (microbiologie)</term>
<term>Cytokines (immunologie)</term>
<term>Facteur de croissance endothéliale vasculaire de type A (génétique)</term>
<term>Hyperplasie (anatomopathologie)</term>
<term>Hyperplasie (immunologie)</term>
<term>Hyperplasie (microbiologie)</term>
<term>Hypoxie (immunologie)</term>
<term>Immunisation (MeSH)</term>
<term>Membrane synoviale (anatomopathologie)</term>
<term>Membrane synoviale (immunologie)</term>
<term>Membrane synoviale (microbiologie)</term>
<term>Membrane synoviale (vascularisation)</term>
<term>Monoxyde d'azote (immunologie)</term>
<term>Monoxyde d'azote (sang)</term>
<term>Néovascularisation pathologique (anatomopathologie)</term>
<term>Néovascularisation pathologique (génétique)</term>
<term>Oxygène (sang)</term>
<term>Régulation positive (MeSH)</term>
<term>Souris (MeSH)</term>
<term>Sous-unité alpha du facteur-1 induit par l'hypoxie (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Antibodies</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="blood" xml:lang="en">
<term>Nitric Oxide</term>
<term>Oxygen</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Hypoxia-Inducible Factor 1, alpha Subunit</term>
<term>Vascular Endothelial Growth Factor A</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Antibodies</term>
<term>Cytokines</term>
<term>Nitric Oxide</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Anticorps</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomopathologie" xml:lang="fr">
<term>Arthrite expérimentale</term>
<term>Hyperplasie</term>
<term>Membrane synoviale</term>
<term>Néovascularisation pathologique</term>
</keywords>
<keywords scheme="MESH" qualifier="blood supply" xml:lang="en">
<term>Synovial Membrane</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arthritis, Experimental</term>
<term>Neovascularization, Pathologic</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arthrite expérimentale</term>
<term>Facteur de croissance endothéliale vasculaire de type A</term>
<term>Néovascularisation pathologique</term>
<term>Sous-unité alpha du facteur-1 induit par l'hypoxie</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Anticorps</term>
<term>Arthrite expérimentale</term>
<term>Cytokines</term>
<term>Hyperplasie</term>
<term>Hypoxie</term>
<term>Membrane synoviale</term>
<term>Monoxyde d'azote</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Arthritis, Experimental</term>
<term>Hyperplasia</term>
<term>Hypoxia</term>
<term>Synovial Membrane</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Arthrite expérimentale</term>
<term>Hyperplasie</term>
<term>Membrane synoviale</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Arthritis, Experimental</term>
<term>Hyperplasia</term>
<term>Synovial Membrane</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Arthritis, Experimental</term>
<term>Hyperplasia</term>
<term>Neovascularization, Pathologic</term>
<term>Synovial Membrane</term>
</keywords>
<keywords scheme="MESH" qualifier="sang" xml:lang="fr">
<term>Monoxyde d'azote</term>
<term>Oxygène</term>
</keywords>
<keywords scheme="MESH" qualifier="vascularisation" xml:lang="fr">
<term>Membrane synoviale</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Immunization</term>
<term>Mice</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Immunisation</term>
<term>Régulation positive</term>
<term>Souris</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Rheumatoid arthritis (RA) is an inflammatory articular disease with cartilage and bone damage due to hyperplasic synoviocyte invasion and subsequent matrix protease digestion. Although monoclonal antibodies against tumor necrosis factor alpha (TNFα) have been approved for clinical use in patients with RA, desired therapeutic regimens suitable for non-responders are still unavailable because etiological initiators leading to RA remain enigmatic and unidentified.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODOLOGY/PRINCIPAL FINDINGS</b>
</p>
<p>Bacteria-induced arthritis (BIA) that simulates collagen-induced arthritis (CIA) is developed in mice upon daily live bacterial feeding. The morphological lesions of paw erythema and edema together with the histological alterations of synovial hyperplasia and lymphocytic infiltration emerge as the early-phase manifestations of BIA and CIA. Bacteria- or collagen-mediated global upregulation of pro-inflammatory cytokines is accompanied by the burst of nitric oxide (NO). Elevation of the serum NO level is correlated with decline of the blood oxygen saturation percentage (SpO2), reflecting a hypoxic consequence during development towards arthritis. NO-driven hypoxia is further evident from a positive relationship between NO and lactic acid (LA), an end product from glycolysis. Upregulation of hypoxia inducible factor 1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) validates hypoxia-induced angiogenesis in the inflamed synovium of modeling mice. Administration of the NO donor compound sodium nitroprusside (SNP) causes articular inflammation by inducing synovial hypoxia. Anti-bacteria by the antibiotic cefotaxime and/or the immunosuppressant rapamycin or artesunate that also inhibits nitric oxide synthase (NOS) can abrogate NO production, mitigate hypoxia, and considerably ameliorate or even completely abort synovitis, hence highlighting that NO may serve as an initiator of inflammatory arthritis.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS/SIGNIFICANCE</b>
</p>
<p>Like collagen, bacteria also enable synovial lesions via upregulating pro-inflammatory cytokines, triggering NO production, driving hypoxic responses, and inducing synovial angiogenesis and hyperplasia, suggesting that sustained infection might be, in part, responsible for the onset of synovitis and arthritis in mice.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22479635</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>07</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2012</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Nitric oxide-driven hypoxia initiates synovial angiogenesis, hyperplasia and inflammatory lesions in mice.</ArticleTitle>
<Pagination>
<MedlinePgn>e34494</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0034494</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Rheumatoid arthritis (RA) is an inflammatory articular disease with cartilage and bone damage due to hyperplasic synoviocyte invasion and subsequent matrix protease digestion. Although monoclonal antibodies against tumor necrosis factor alpha (TNFα) have been approved for clinical use in patients with RA, desired therapeutic regimens suitable for non-responders are still unavailable because etiological initiators leading to RA remain enigmatic and unidentified.</AbstractText>
<AbstractText Label="METHODOLOGY/PRINCIPAL FINDINGS" NlmCategory="RESULTS">Bacteria-induced arthritis (BIA) that simulates collagen-induced arthritis (CIA) is developed in mice upon daily live bacterial feeding. The morphological lesions of paw erythema and edema together with the histological alterations of synovial hyperplasia and lymphocytic infiltration emerge as the early-phase manifestations of BIA and CIA. Bacteria- or collagen-mediated global upregulation of pro-inflammatory cytokines is accompanied by the burst of nitric oxide (NO). Elevation of the serum NO level is correlated with decline of the blood oxygen saturation percentage (SpO2), reflecting a hypoxic consequence during development towards arthritis. NO-driven hypoxia is further evident from a positive relationship between NO and lactic acid (LA), an end product from glycolysis. Upregulation of hypoxia inducible factor 1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) validates hypoxia-induced angiogenesis in the inflamed synovium of modeling mice. Administration of the NO donor compound sodium nitroprusside (SNP) causes articular inflammation by inducing synovial hypoxia. Anti-bacteria by the antibiotic cefotaxime and/or the immunosuppressant rapamycin or artesunate that also inhibits nitric oxide synthase (NOS) can abrogate NO production, mitigate hypoxia, and considerably ameliorate or even completely abort synovitis, hence highlighting that NO may serve as an initiator of inflammatory arthritis.</AbstractText>
<AbstractText Label="CONCLUSIONS/SIGNIFICANCE" NlmCategory="CONCLUSIONS">Like collagen, bacteria also enable synovial lesions via upregulating pro-inflammatory cytokines, triggering NO production, driving hypoxic responses, and inducing synovial angiogenesis and hyperplasia, suggesting that sustained infection might be, in part, responsible for the onset of synovitis and arthritis in mice.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bao</LastName>
<ForeName>Fei</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Pei</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xiao</LastName>
<ForeName>Na</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Qiu</LastName>
<ForeName>Frank</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zeng</LastName>
<ForeName>Qing-Ping</ForeName>
<Initials>QP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>03</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000906">Antibodies</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016207">Cytokines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051795">Hypoxia-Inducible Factor 1, alpha Subunit</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D042461">Vascular Endothelial Growth Factor A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>31C4KY9ESH</RegistryNumber>
<NameOfSubstance UI="D009569">Nitric Oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000906" MajorTopicYN="N">Antibodies</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001169" MajorTopicYN="N">Arthritis, Experimental</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016207" MajorTopicYN="N">Cytokines</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006965" MajorTopicYN="N">Hyperplasia</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000860" MajorTopicYN="N">Hypoxia</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051795" MajorTopicYN="N">Hypoxia-Inducible Factor 1, alpha Subunit</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007114" MajorTopicYN="N">Immunization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009389" MajorTopicYN="N">Neovascularization, Pathologic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="N">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009569" MajorTopicYN="N">Nitric Oxide</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000097" MajorTopicYN="N">blood</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013583" MajorTopicYN="N">Synovial Membrane</DescriptorName>
<QualifierName UI="Q000098" MajorTopicYN="N">blood supply</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
<QualifierName UI="Q000473" MajorTopicYN="Y">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042461" MajorTopicYN="N">Vascular Endothelial Growth Factor A</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>11</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>03</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22479635</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0034494</ArticleId>
<ArticleId IdType="pii">PONE-D-11-22344</ArticleId>
<ArticleId IdType="pmc">PMC3316675</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Ann Rheum Dis. 2010 Jul;69(7):1389-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20439288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12504-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14523233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Res Ther. 2010;12(3):210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20609263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 2004 Sep;50(9):2995-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15457469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2005 Jan;15(1):63-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15686630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunology. 2001 Aug;103(4):407-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11529930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Rheumatol Suppl. 2004 Apr;70:70-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15132359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 2010 Aug;62(8):2294-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20506288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Lett. 2007 Jul 31;111(1):1-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17568690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Aug 14;549(1-3):99-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12914933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e23453</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21858123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Oncol. 2001 Mar;2(3):149-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11902565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Hepatol. 2010 Sep 27;2(9):337-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21161018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jan 23;279(4):2550-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14600153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3749-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21321221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 1996 Oct;39(10):1677-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8843858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Jul 15;119(Pt 14):2855-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16825426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2007 Dec 1;370(9602):1861-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17570481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rheumatology (Oxford). 2010 Nov;49(11):2140-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20667949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Rheum Dis. 1992 Nov;51(11):1219-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1466599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nitric Oxide. 2011 Aug 1;25(2):125-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21199675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rheumatology (Oxford). 2008 Aug;47(8):1172-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18565987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Med. 2010 Sep-Oct;16(9-10):352-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20517583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1980 Feb 14;283(5748):666-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6153460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2009 Jan 13;6(1):e9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19143469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Res. 2000;2(2):85-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11094417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Apr 22;332(6028):478-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21393509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 1999 Dec;31(6):577-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10630682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Res Ther. 2011;13 Suppl 1:S5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21624184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Res Ther. 2011;13 Suppl 1:S4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21624183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2008 Mar;153(6):1303-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18264129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Sep;3(9):e348</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16968121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pain Physician. 2011 Sep-Oct;14(5):E427-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21927056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Rheum Dis. 2010 Jan;69 Suppl 1:i57-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19995746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Springer Semin Immunopathol. 2005 Sep;27(2):181-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15928914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(5):1269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17546023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Rev. 2012 Jan;245(1):27-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22168412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Cell Mater. 2007;13:56-65; discussion 65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17427142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Rheum Dis. 2003 Dec;62(12):1135-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14644849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Haematol. 2009 Apr;145(1):101-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19208097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 May 15;88(10):4220-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1709737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Rheum Dis. 2002 Nov;61 Suppl 2:ii96-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12379637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Res Ther. 2011;13(4):R121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21787418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Lett. 2008 Jun 15;118(1):55-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18396335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 1998 Dec;41(12):2205-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9870877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2006 Feb;2(2):e4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16518473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 1997 Jan 1;99(1):110-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9011564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2010 Jun 25;32(6):815-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20620945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2011 Sep;17(9):1055-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21900923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2009 Jan 13;6(1):e1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19143467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Rheum. 2010 Mar;62(3):711-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20187131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1998 Sep;275(3 Pt 1):G564-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724270</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<region>
<li>Guangdong</li>
</region>
<settlement>
<li>Jiangmen</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Qiu, Frank" sort="Qiu, Frank" uniqKey="Qiu F" first="Frank" last="Qiu">Frank Qiu</name>
<name sortKey="Wu, Pei" sort="Wu, Pei" uniqKey="Wu P" first="Pei" last="Wu">Pei Wu</name>
<name sortKey="Xiao, Na" sort="Xiao, Na" uniqKey="Xiao N" first="Na" last="Xiao">Na Xiao</name>
<name sortKey="Zeng, Qing Ping" sort="Zeng, Qing Ping" uniqKey="Zeng Q" first="Qing-Ping" last="Zeng">Qing-Ping Zeng</name>
</noCountry>
<country name="République populaire de Chine">
<region name="Guangdong">
<name sortKey="Bao, Fei" sort="Bao, Fei" uniqKey="Bao F" first="Fei" last="Bao">Fei Bao</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001150 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001150 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22479635
   |texte=   Nitric oxide-driven hypoxia initiates synovial angiogenesis, hyperplasia and inflammatory lesions in mice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22479635" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020